Hyperplanes and halfspaces
超平面和半空间的几何理解, 取任意在超平面上的点, 那么存在点, 然后向量与超平面的法向量做对比,乘积为钝角或者锐角即可划分半平面空间了。
Hyperplane in , with normal vector a and a point in the hyperplane. For any point x in the hyperplane, (shown as the darker arrow) is orthogonal to .
A hyperplane defined by in determines two halfspaces. The halfspace determined by
(not shaded) is the halfspace extending in the direction . The halfspace determined by (which is shown shaded) extends in the direction . The vector a is the outward normal of this halfspace.
The shaded set is the halfspace determined by . The vector makes an acute angle with a, so is not in the halfspace. The vector makes an obtuse angle with a, and so is in the halfspace.
Proper cones and generalized inequalities
- is pointed, which means that it contains no line (or equivalently, ). 几何意思是一个cone里面不存在直线,使得穿过0点后,既在cone中,又在cone外。
minimum and minimal
极小元,最小元
minimum和minimal的区别: 广义的及是否与S只是相交于一点。 is a proper cone. 在广义的不等式中,被当做符号来使用.
以下是两个重要概念
- 最小元的定义只考察在中的所有广义大于的点,如下图左边子图所示广义大于的点组成了浅灰色的区域
where denotes all the points that are comparable to and greater than or equal to (according to ).
- 极小元的定义只考察在中的所有广义小于的点,如下图右边子图所示广义小于的点组成了浅灰色的区域
where denotes all the points that are comparable to and less than or equal to (according to ).
表示一个圆心在圆点的椭圆
且定义等价于
定义对称矩阵的结合为:
下图表示:
对比椭圆1和3都经过了图中的两个点,等价于了, 但是没有一个椭圆可以被椭圆2包含,且经过图中的那个点(两个椭圆圆心相同)。说明了椭圆2表示的对称矩阵是的最小元, 当。